Multi-Channel Features Spatio-Temporal Context Learning for Visual Tracking
نویسندگان
چکیده
منابع مشابه
Online Spatio-temporal Structural Context Learning for Visual Tracking
Visual tracking is a challenging problem, because the target frequently change its appearance, randomly move its location and get occluded by other objects in unconstrained environments. The state changes of the target are temporally and spatially continuous, in this paper therefore, a robust Spatio-Temporal structural context based Tracker (STT) is presented to complete the tracking task in un...
متن کاملFast Visual Tracking via Dense Spatio-temporal Context Learning
In this paper, we present a simple yet fast and robust algorithm which exploits the dense spatio-temporal context for visual tracking. Our approach formulates the spatio-temporal relationships between the object of interest and its locally dense contexts in a Bayesian framework, which models the statistical correlation between the simple low-level features (i.e., image intensity and position) f...
متن کاملFast Tracking via Spatio-Temporal Context Learning
In this paper, we present a simple yet fast and robust algorithm which exploits the spatio-temporal context for visual tracking. Our approach formulates the spatio-temporal relationships between the object of interest and its local context based on a Bayesian framework, which models the statistical correlation between the low-level features (i.e., image intensity and position) from the target a...
متن کاملOrderless and Blurred Visual Tracking via Spatio-temporal Context
In this paper,a novel and robust method which exploits the spatio-temporal context for orderless and blurred visual tracking is presented.This lets the tracker adapt to both rigid and deformable objects on-line even if the image is blurred.We observe that a RGB vectorof animage which is resizedinto a small fixed size can keep enough useful information.Based on this observation and computational...
متن کاملSpatio-Temporal Context of Mid-level Features for Activity Recognition
Local spatio-temporal features have been shown to be efficient and robust to represent simple actions. However, for complicated human activities with long-range motion or multiple interactive body parts and persons, the limitation of low-level features blows up because of their local properties and the lack of context. This paper addresses the problem by suggesting a framework for both computin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2017
ISSN: 2169-3536
DOI: 10.1109/access.2017.2720746